论文标题
关于古代重新恢复平均曲率流的存在和独特性
On the Existence and Uniqueness of Ancient Rescaled Mean Curvature Flows
论文作者
论文摘要
我们展示了从给定的渐近锥形自我外科手开始的恢复平均曲率流的古老解决方案的存在。这些是平均曲率流的示例,这些流来自不相似的锥体。当锥体是通用的时,我们还显示出强烈的唯一定理,并使用它分类的平均曲率流从低维度的小熵的通用锥体出来。
We show existence of ancient solutions to the rescaled mean curvature flow starting from a given asymptotically conical self-expander. These are examples of mean curvature flows coming out of cones that are not self-similar. We also show a strong uniqueness theorem when the cone is generic and use it to classify mean curvature flows coming out of generic cones of small entropy in low dimensions.