论文标题

圆盘和天体$ lw_ {1+ \ infty} $ symmetries的重力

Gravity from holomorphic discs and celestial $Lw_{1+\infty}$ symmetries

论文作者

Mason, Lionel

论文摘要

在拆分或克莱恩的签名中,扭曲构建构造从扭曲器数据中对量规和重力自偶性(SD)方程进行参数化解决方案,这些方程可以用无量表自由的自由平滑数据表示。这里为渐近平面SD重力提供了相应的结构,从真实的扭曲器空间上的真实同质产生函数$ h $表示,提供了渐近引力数据的完全非线性编码。几何$ h $确定了真正的扭曲器空间$ \ rp^3 $的位置的非线性变形。 该演示文稿提供了Strominger最近发现的$ LW_ {1+ \ infty} $ CELESTIAL对称性的最佳介绍。当真实的情况下,这些在真实的扭曲器空间上作为被动泊松型差异性。但是,当假想的时候,这种泊松转换是主动的对称性,并通过变形扭曲器空间的真实切片的位置来对重力场产生变化。 重力幅度是全型,双偶发性爱因斯坦重力的重力振幅,是手性扭曲器Sigma模型的相关因子。这是针对分裂签名的重新制定的,因为扭曲空间中的圆盘圆盘理论的边界位于由$ h $确定的变形的真实切片上。真正的$ lw_ {1+ \ infty} $ symmetries ACT OAS量规对称性,但是虚构发电机产生了在扰动膨胀中产生重力的Graviton顶点操作员。 简短地讨论了All Plus 1-Elop振幅的生成函数,Yang-Mills的类似框架,Lorentz签名中的可能解释以及在拆分签名中4D中的扭曲器和AmbitWistor字符串的类似开放式弦乐公式进行了简要讨论。

In split or Kleinian signature, twistor constructions parametrize solutions to both gauge and gravity self-duality (SD) equation from twistor data that can be expressed in terms of free smooth data without gauge freedom. Here the corresponding constructions are given for asymptotically flat SD gravity providing a fully nonlinear encoding of the asymptotic gravitational data in terms of a real homogeneous generating function $h$ on the real twistor space. Geometrically $h$ determines a nonlinear deformation of the location of the real twistor space $\RP^3$ inside the complex twistor space $\CP^3$. This presentation gives an optimal presentation of Strominger's recently discovered $Lw_{1+\infty}$ celestial symmetries. These, when real, act locally as passive Poisson diffeomorphisms on the real twistor space. However, when imaginary, such Poisson transformations are active symmetries, and generate changes to the gravitational field by deforming the location of the real slice of the twistor space. Gravity amplitudes for the full, non-self-dual Einstein gravity, arise as correlators of a chiral twistor sigma model. This is reformulated for split signature as a theory of holomorphic discs in twistor space whose boundaries lie on the deformed real slice determined by $h$. Real $Lw_{1+\infty}$ symmetries act oas gauge symmetries, but imaginary generators yield graviton vertex operators that generate gravitons in the perturbative expansion. A generating function for the all plus 1-loop amplitude, an analogous framework for Yang-Mills, possible interpretations in Lorentz signature and similar open string formulations of twistor and ambitwistor strings in 4d in split signature, are briefly discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源