论文标题
小波的重新归一化
Renormalization in Wavelet basis
论文作者
论文摘要
基于离散小波的方法有望成为量子场理论非扰动分析的绝佳框架。在这项工作中,我们研究了使用基于小波的方法分析的理论重新归一化的各个方面。我们证明了在这些方法的背景下,正规化,重新归一化和流动耦合常数的出现的非扰动方法。这是在两个空间维度中有吸引力的Dirac Delta功能潜力中的粒子模型上测试的,该空间维度可以证明在典型的相对论量子场理论中发现的典型特征。
Discrete wavelet-based methods promise to emerge as an excellent framework for the non-perturbative analysis of quantum field theories. In this work, we investigate aspects of renormalization in theories analyzed using wavelet-based methods. We demonstrate the non-perturbative approach of regularization, renormalization, and the emergence of flowing coupling constant within the context of these methods. This is tested on a model of the particle in an attractive Dirac delta function potential in two spatial dimensions, which is known to demonstrate quintessential features found in a typical relativistic quantum field theory.