论文标题

同型类型理论简介

Introduction to Homotopy Type Theory

论文作者

Rijke, Egbert

论文摘要

这是一本针对单价数学和同型类型理论的介绍性教科书,这是一个数学基础,它利用了数学定义和构造的结构性。在数学实践中,通常认为等效对象是相同的,例如,识别同构基团。在集合理论中,不可能使这种常见的实践形式化。例如,集合理论中的琐碎群体与不同的单例集一样多。另一方面,类型理论采用更结构的方法来适应数学基础,该基础可容纳公理。但是,这要求我们重新考虑两个对象相等的含义。这本教科书向读者介绍了马丁·兰夫的依赖类型理论,即单价数学的中心概念,并向读者展示了如何从单价观点开始数学。包括200多个练习,以培训读者的类型理论推理。这本书是完全独立的,尤其是对类型理论或同义理论的事先熟悉。

This is an introductory textbook to univalent mathematics and homotopy type theory, a mathematical foundation that takes advantage of the structural nature of mathematical definitions and constructions. It is common in mathematical practice to consider equivalent objects to be the same, for example, to identify isomorphic groups. In set theory it is not possible to make this common practice formal. For example, there are as many distinct trivial groups in set theory as there are distinct singleton sets. Type theory, on the other hand, takes a more structural approach to the foundations of mathematics that accommodates the univalence axiom. This, however, requires us to rethink what it means for two objects to be equal. This textbook introduces the reader to Martin-Löf's dependent type theory, to the central concepts of univalent mathematics, and shows the reader how to do mathematics from a univalent point of view. Over 200 exercises are included to train the reader in type theoretic reasoning. The book is entirely self-contained, and in particular no prior familiarity with type theory or homotopy theory is assumed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源