论文标题

手性代数的二元双重性

Quadratic Duality for Chiral Algebras

论文作者

Gui, Zhengping, Li, Si, Zeng, Keyou

论文摘要

我们介绍了手性代数的二次二元性概念。这可以看作是二次关联代数的通常二次二元性的手性版本。我们研究了这种双重性概念与手性代数的毛勒 - 卡丹方程之间的关系,这与联想代数案例平行。我们还提供了一些明确的例子。

We introduce a notion of quadratic duality for chiral algebras. This can be viewed as a chiral version of the usual quadratic duality for quadratic associative algebras. We study the relationship between this duality notion and the Maurer-Cartan equations for chiral algebras, which turns out to be parallel to the associative algebra case. We also present some explicit examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源