论文标题

对于量子双尾部方案,通货膨胀层次结构和极化层次结构是完整的

The inflation hierarchy and the polarization hierarchy are complete for the quantum bilocal scenario

论文作者

Ligthart, Laurens T., Gross, David

论文摘要

表征可以通过对量子机械系统进行测量来获得的相关性集是一个基本但困难的问题。当假定量子状态的制备程序符合给定的因果结构时,问题尤其具有挑战性。最近,基于所谓的量子通货膨胀技术给出了这种量子因果关系问题的第一个完整结果。但是,通过施加其他技术约束,例如观察到的施密特等级的上限来实现完整性。在这里,我们表明这些并发症在量子双腹场景中是不必要的,这是一个备受研究的纠缠交换实验的抽象模型。我们证明,在通勤观察到的位置模型中,量子通货膨胀层次结构是完整的。我们还提供了Tsirelson观察的双向版本,即在有限的尺寸,通勤的可观测模型和局部性的张量产品模型一致。这些结果回答了Renou和Xu最近提出的问题。最后,我们指出,我们的技术可以更普遍地解释为产生SDP层次结构,该层次结构是为了优化由发电机和关系定义的运算符状态的多项式函数的问题。这种两极分化层次结构的完整性来自最大$ c^*$ - 张量产品的量子de Finetti定理。

It is a fundamental but difficult problem to characterize the set of correlations that can be obtained by performing measurements on quantum mechanical systems. The problem is particularly challenging when the preparation procedure for the quantum states is assumed to comply with a given causal structure. Recently, a first completeness result for this quantum causal compatibility problem has been given, based on the so-called quantum inflation technique. However, completeness was achieved by imposing additional technical constraints, such as an upper bound on the Schmidt rank of the observables. Here, we show that these complications are unnecessary in the quantum bilocal scenario, a much-studied abstract model of entanglement swapping experiments. We prove that the quantum inflation hierarchy is complete for the bilocal scenario in the commuting observables model of locality. We also give a bilocal version of an observation by Tsirelson, namely that in finite dimensions, the commuting observables model and the tensor product model of locality coincide. These results answer questions recently posed by Renou and Xu. Finally, we point out that our techniques can be interpreted more generally as giving rise to an SDP hierarchy that is complete for the problem of optimizing polynomial functions in the states of operator algebras defined by generators and relations. The completeness of this polarization hierarchy follows from a quantum de Finetti theorem for states on maximal $C^*$-tensor products.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源