论文标题
用双触及变量对热传导进行建模:一种机理数据融合法
Modeling Heat Conduction with Dual-Dissipative Variables: A Mechanism-Data Fusion Method
论文作者
论文摘要
在过去的几十年中,基于Chapman-Enskog,Hermite或其他小型扰动扩张方法,已经开发了许多宏观的非F型热传导模型。这些宏观模型在捕获固体材料中的非四型热行为方面取得了巨大的成功,但是大多数人受小刀数的限制,并且无法捕获高度非平衡或弹道热传输。在本文中,我们提供了一种构建宏观非唤高热传导建模的新策略,即使用数据驱动的深度学习方法与非平衡热力学结合而不是小型扰动扩展。我们介绍了机理数据融合方法,该方法无缝地整合了严格的保护 - 弥补形式主义(CDF)的框架,并具有机器学习的灵活性,以模拟非较高的热传导。利用双截止性变量利用保护原理,我们得出了一系列可解释的偏微分方程,通过训练策略进行了微调,该培训策略由来自Phonon Boltzmann传输方程的数据提供了信息。此外,我们还提出了内部步骤操作,以将间隙从离散形式缩小到连续系统。通过数值测试,我们的模型在各种热传导方面(包括扩散,流体动力和弹道制度)展示了出色的预测能力,即使在不连续的初始条件下也显示出其稳健性和精度。
Many macroscopic non-Fourier heat conduction models have been developed in the past decades based on Chapman-Enskog, Hermite or other small perturbation expansion methods. These macroscopic models have made great success on capturing non-Fourier thermal behaviors in solid materials, but most of them are limited by small Knudsen numbers and incapable of capturing highly non-equilibrium or ballistic thermal transport. In this paper, we provide a new strategy for constructing macroscopic non-Fourier heat conduction modeling, that is, using data-driven deep learning methods combined with non-equilibrium thermodynamics instead of small perturbation expansion. We present the mechanism-data fusion method, an approach that seamlessly integrates the rigorous framework of Conservation-Dissipation Formalism (CDF) with the flexibility of machine learning to model non-Fourier heat conduction. Leveraging the conservation-dissipation principle with dual-dissipative variables, we derive an interpretable series of partial differential equations, fine-tuned through a training strategy informed by data from the phonon Boltzmann transport equation. Moreover, we also present the inner-step operation to narrow the gap from the discrete form to the continuous system. Through numerical tests, our model demonstrates excellent predictive capabilities across various heat conduction regimes, including diffusive, hydrodynamic and ballistic regimes, and displays its robustness and precision even with discontinuous initial conditions.