论文标题

ddcolor:通过双重解码器迈向光真逼真的图像着色

DDColor: Towards Photo-Realistic Image Colorization via Dual Decoders

论文作者

Kang, Xiaoyang, Yang, Tao, Ouyang, Wenqi, Ren, Peiran, Li, Lingzhi, Xie, Xuansong

论文摘要

由于多模式的不确定性和高位不良,图像着色是一个具有挑战性的问题。直接训练深度神经网络通常会导致语义颜色不正确和低色丰富。尽管基于变压器的方法可以提供更好的结果,但它们通常依靠手动设计的先验,概括能力差并引入颜色出血效果。为了解决这些问题,我们提出了DDColor,DDColor是一种端到端方法,其中具有双重解码器用于图像着色。我们的方法包括一个像素解码器和基于查询的颜色解码器。前者恢复了图像的空间分辨率,而后者则利用丰富的视觉特征来完善颜色查询,从而避免了手工制作的先验。我们的两个解码器共同努力,通过交叉注意建立颜色和多尺度语义表示之间的相关性,从而大大减轻了颜色出血效果。此外,引入了简单而有效的彩色损失,以增强色彩丰富度。广泛的实验表明,DDColor在定量和定性上都可以实现与现有最新的最新性能。这些代码和模型可在https://github.com/piddnad/ddcolor上公开获得。

Image colorization is a challenging problem due to multi-modal uncertainty and high ill-posedness. Directly training a deep neural network usually leads to incorrect semantic colors and low color richness. While transformer-based methods can deliver better results, they often rely on manually designed priors, suffer from poor generalization ability, and introduce color bleeding effects. To address these issues, we propose DDColor, an end-to-end method with dual decoders for image colorization. Our approach includes a pixel decoder and a query-based color decoder. The former restores the spatial resolution of the image, while the latter utilizes rich visual features to refine color queries, thus avoiding hand-crafted priors. Our two decoders work together to establish correlations between color and multi-scale semantic representations via cross-attention, significantly alleviating the color bleeding effect. Additionally, a simple yet effective colorfulness loss is introduced to enhance the color richness. Extensive experiments demonstrate that DDColor achieves superior performance to existing state-of-the-art works both quantitatively and qualitatively. The codes and models are publicly available at https://github.com/piddnad/DDColor.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源