论文标题

第一原理的固态顺磁性缺陷中的自旋phonon变形

Spin-phonon decoherence in solid-state paramagnetic defects from first principles

论文作者

Mondal, Sourav, Lunghi, Alessandro

论文摘要

钻石和六角硼硝化物中的顺磁性缺陷具有独特的自旋和光学特性组合,使它们成为原型固态Qubits。尽管这些旋转量子孔的连贯性受到旋转 - 音波松弛的严重限制,但尚未完全了解此过程。在这里,我们将自发动力学模拟应用于此问题,并定量再现自旋松弛时间和自旋相干时间的实验温度依赖性。我们证明,零场分裂的低频两频调制是造成自旋松弛和反矫正性的原因,并指出了二维材料中振动的性质,这是其较短的相干时间的罪魁祸首。这些结果为固态顺磁性缺陷中的自旋phonon反应性提供了一种新的解释,提供了一种新的策略来正确解释实验结果,并为新的自旋量子的加速设计铺平了道路。

Paramagnetic defects in diamond and hexagonal boron nitride possess a unique combination of spin and optical properties that make them prototypical solid-state qubits. Despite the coherence of these spin qubits being critically limited by spin-phonon relaxation, a full understanding of this process is not yet available. Here we apply ab initio spin dynamics simulations to this problem and quantitatively reproduce the experimental temperature dependence of spin relaxation time and spin coherence time. We demonstrate that low-frequency two-phonon modulations of the zero-field splitting are responsible for spin relaxation and decoherence, and point to the nature of vibrations in 2-dimensional materials as the culprit for their shorter coherence time. These results provide a novel interpretation to spin-phonon decoherence in solid-state paramagnetic defects, offer a new strategy to correctly interpret experimental results, and pave the way for the accelerated design of new spin qubits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源