论文标题
图书馆主义及其古典和古典套装理论
Librationism & its classical and extraclassical set theories
论文作者
论文摘要
图书馆主义集理论£$ {} $是开发的。它来自克里普克(Kripke)和其他人发起的真理语义。 #扩展了逻辑和逻辑哲学中悖论的图书馆主义者封闭的£21(4),323-361,2012。重点是集合理论中的悖论。一个中心结果是#$ \ mathscr {hr}(\ mathbf {g})$ of#,以$ \ mathbf {nbg} $ set理论为帐户,具有全局AC和Tarski的Axiom。 #通过定义不可思议的表现设置$ \ mathbf {w} $,$ \ mathit {die \ welt} $,可以成功,以便#$ \ mathscr {h}(\ Mathbf {w})$ for Quine's $ \ Mathbf {NF} $。开发的观点支持这样一种观点,即真相 - 偏多毒素和彼得多斯通常具有共同的起源,因此在某些情况下,设定理论悖论的图书馆主义分辨率是相应真理理论悖论的分辨率。图书馆主义者集理论的结果是绝对没有不可数的集,因此#保留了作者2012年文章的意识形态,即集合理论宇宙是可计数的。但是,例如$ \ mathbf {nbg} $被解释为“相信”有一些无法数的集合。这种情况几乎是由Skolem分析的,尽管并不是建议$ \ Mathit {set} $的概念不精确:对于有限的von Neumann ordinals的两组射击而言,整个宇宙都不是经典集合理论的成员。对角引理是可衍生的;但是,系统的真相谓词只能实现稍微改革的希尔伯特 - 伯纳斯 - 洛比衍生性条件,因此,真理的löb规则无效。
Librationist set theory £${}$ is developed. It descends from semantics for truth, initiated by Kripke, and others. # extends £, of Librationist closures of the paradoxes in Logic and Logical Philosophy 21(4), 323-361, 2012. Focus is on the paradoxes in theories of sets. A central result is that extension #$\mathscr{HR}(\mathbf{G})$, of #, accounts for $\mathbf{NBG}$ set theory, with global AC and Tarski's Axiom. # succeeds with defining an impredicative manifestation set $\mathbf{W}$, $\mathit{die \ Welt}$, so that #$\mathscr{H}(\mathbf{W})$ accounts for Quine's $\mathbf{NF}$. The points of view developed support the view that the truth-paradoxes and the set-paradoxes often have common origins, so that the librationist resolutions of set theoretic paradoxes are in some cases at the same time resolutions of corresponding truth theoretic paradoxes. Librationist set theories have the consequence that there are absolutely no uncountable sets, and so # retains the ideology of the author's 2012 article, that the set theoretic universe is countable. But the set within which e.g. $\mathbf{NBG}$ is interpreted "believes" that there are sets which are uncountable. That situation is analyzed almost as by Skolem, though it is not suggested that the notion of $\mathit{set}$ is imprecise: for the bijection from the set of finite von Neumann ordinals to the full universe is not a member of a classical set theory. The Diagonal Lemma is derivable; but the truth predicate of the system only fulfills slightly reformed Hilbert-Bernays-Löb derivability conditions, so the Löb rule for truth is not valid.