论文标题
未经域方法的局部减少基础方法
A localized reduced basis approach for unfitted domain methods on parameterized geometries
论文作者
论文摘要
这项工作引入了降低的订单建模(ROM)框架,用于在未固定几何形状上提出的参数化二阶线性椭圆形偏微分方程的解决方案。目标是构建有效的基于投影的ROM,该ROM依赖于诸如减少基础方法和离散的经验插值等技术。在未固定域离散化中的几何参数的存在需要标准ROM的应用挑战。因此,在这项工作中,我们提出了一种基于i)在背景网格和ii)降低基础功能数量的本地化策略上扩展快照的方法。我们获得的方法是计算上有效且准确的,而相对于基本离散选择不可知。我们通过数值实验在两个模型问题上测试了提出的框架的适用性,即泊松和线性弹性问题。特别是,我们研究了通过花键离散的二维,修剪的域制定的几个基准,并且与标准ROM相比,我们观察到在线计算成本的显着降低。此外,我们显示了我们的方法论对线性弹性问题的三维几何形状的适用性。
This work introduces a reduced order modeling (ROM) framework for the solution of parameterized second-order linear elliptic partial differential equations formulated on unfitted geometries. The goal is to construct efficient projection-based ROMs, which rely on techniques such as the reduced basis method and discrete empirical interpolation. The presence of geometrical parameters in unfitted domain discretizations entails challenges for the application of standard ROMs. Therefore, in this work we propose a methodology based on i) extension of snapshots on the background mesh and ii) localization strategies to decrease the number of reduced basis functions. The method we obtain is computationally efficient and accurate, while it is agnostic with respect to the underlying discretization choice. We test the applicability of the proposed framework with numerical experiments on two model problems, namely the Poisson and linear elasticity problems. In particular, we study several benchmarks formulated on two-dimensional, trimmed domains discretized with splines and we observe a significant reduction of the online computational cost compared to standard ROMs for the same level of accuracy. Moreover, we show the applicability of our methodology to a three-dimensional geometry of a linear elastic problem.