论文标题

少数本地组的最大可回收LRC的结构

A construction of Maximally Recoverable LRCs for small number of local groups

论文作者

Dhar, Manik, Gopi, Sivakanth

论文摘要

最大可回收的本地重建代码(LRC)是设计用于分布式存储的代码,可为给定数量的存储冗余和区域提供最大的弹性。 a $(n,r,h,a,g)$ - LRC先生的$ n $坐标分为$ g $ $ r = n/g $的本地组,每个本地组都有`$ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ h $'$ h $'全球平价检查。这样的代码可以纠正每个本地组中的`$ a $ a $'擦除和任何$ h $额外的擦除。需要在小场上LRC的构造,因为场大小决定了实践中的编码和解码效率。在这项工作中,我们提供了$(n,r,h,a,g)$ -lrcs的新结构,该尺寸$ q = o(n)^{h+(g-1)a- \ lceil h/g \ rceil} $概括了Hu and Yekhanin(ISIT 2016)。当有少数本地群体中,这在LRC先生的实际部署中是正确的,从而改善了最新技术。

Maximally Recoverable Local Reconstruction Codes (LRCs) are codes designed for distributed storage to provide maximum resilience to failures for a given amount of storage redundancy and locality. An $(n,r,h,a,g)$-MR LRC has $n$ coordinates divided into $g$ local groups of size $r=n/g$, where each local group has `$a$' local parity checks and there are an additional `$h$' global parity checks. Such a code can correct `$a$' erasures in each local group and any $h$ additional erasures. Constructions of MR LRCs over small fields is desirable since field size determines the encoding and decoding efficiency in practice. In this work, we give a new construction of $(n,r,h,a,g)$-MR-LRCs over fields of size $q=O(n)^{h+(g-1)a-\lceil h/g\rceil}$ which generalizes a construction of Hu and Yekhanin (ISIT 2016). This improves upon state of the art when there are a small number of local groups, which is true in practical deployments of MR LRCs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源