论文标题

Daugavet和直径在Orlicz-Lorentz空间中的两个特性

Daugavet and diameter two properties in Orlicz-Lorentz spaces

论文作者

Kamińska, Anna, Lee, Han Ju, Tag, Hyung-Joon

论文摘要

在本文中,我们研究了配备有卢森堡标准的Orlicz-Lorentz空间中的直径两种特性(D2P),直径两个特性(直径D2P)和Daugavet特性。首先,我们通过考虑所有有限的现实价值orlicz函数来表征Orlicz-Lorentz空间中Orlicz-Lorentz空间的rad-nikodým属性。为了证明这一点,计算了由扩展的实价函数定义的双空间的基本功能。我们还表明,如果Orlicz函数不满足适当的$δ_2$条件,则Orlicz-Lorentz空间及其订单连续子空间具有强直径的两个属性。因此,鉴于Orlicz函数是无穷大的N功能,因此相同的条件表征了Orlicz-Lorentz空间的两个特性以及其Köthe双空间的八面体性。当重量函数是常规的时,具有Daugavet属性和直径D2P的Orlicz-Lorentz函数空间和直径D2P的同构为$ L_1 $。在此过程中,我们观察到每个本地均匀的非Quaine点都不是$Δ$ - 点。这一事实提供了另一类无需$δ$ - 点。作为另一个应用程序,结果表明,对于配备了卢森堡标准的Orlicz-Lorentz空间,由无穷大的N功能定义,其Köthe双空间没有局部直径两个属性,也没有其他(直径)直径的两种属性和Daugagavet属性。

In this article, we study the diameter two properties (D2Ps), the diametral diameter two properties (diametral D2Ps), and the Daugavet property in Orlicz-Lorentz spaces equipped with the Luxemburg norm. First, we characterize the Radon-Nikodým property of Orlicz-Lorentz spaces in full generality by considering all finite real-valued Orlicz functions. To show this, the fundamental functions of their Köthe dual spaces defined by extended real-valued Orlicz functions are computed. We also show that if an Orlicz function does not satisfy the appropriate $Δ_2$-condition, the Orlicz-Lorentz space and its order-continuous subspace have the strong diameter two property. Consequently, given that an Orlicz function is an N-function at infinity, the same condition characterizes the diameter two properties of Orlicz-Lorentz spaces as well as the octahedralities of their Köthe dual spaces. The Orlicz-Lorentz function spaces with the Daugavet property and the diametral D2Ps are isometrically isomorphic to $L_1$ when the weight function is regular. In the process, we observe that every locally uniformly nonsquare point is not a $Δ$-point. This fact provides another class of real Banach spaces without $Δ$-points. As another application, it is shown that for Orlicz-Lorentz spaces equipped with the Luxemburg norm defined by an N-function at infinity, their Köthe dual spaces do not have the local diameter two property, and so as other (diametral) diameter two properties and the Daugavet property.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源