论文标题

部分可观测时空混沌系统的无模型预测

The planar $3$-colorable subgroup $\mathcal{E}$ of Thompson's group $F$ and its even part

论文作者

Aiello, Valeriano, Nagnibeda, Tatiana

论文摘要

我们研究了汤普森(Thompson)的$ f $的平面$ 3 $ -Colorable子组$ \ MATHCAL {E} $,甚至其部分$ \ Mathcal {e} _ {\ rm eveven} $。后者是通过将$ \ Mathcal {e} $切成$ f $ isomorphic的有限索引子组的$ \ Mathcal {e} $获得的,即矩形子组$ k _ {(2,2)} $。我们表明,平面$ 3 $ 3 $ - 可油的子群的均匀部分$ \ Mathcal {e} _ {\ rm evev} $在适当的二元理性子集的稳定器方面接受了描述。结果,$ \ Mathcal {e} _ {\ rm even} $是从Golan和Sapir的意义上关闭的。然后,我们研究了与$ \ Mathcal {e} _ {\ rm evev} $相关的三个准常规表示:两个表明两个是不可约的,一个是可还原的。

We study the planar $3$-colorable subgroup $\mathcal{E}$ of Thompson's group $F$ and its even part $\mathcal{E}_{\rm EVEN}$. The latter is obtained by cutting $\mathcal{E}$ with a finite index subgroup of $F$ isomorphic to $F$, namely the rectangular subgroup $K_{(2,2)}$. We show that the even part $\mathcal{E}_{\rm EVEN}$ of the planar $3$-colorable subgroup admits a description in terms of stabilisers of suitable subsets of dyadic rationals. As a consequence $\mathcal{E}_{\rm EVEN}$ is closed in the sense of Golan and Sapir. We then study three quasi-regular representations associated with $\mathcal{E}_{\rm EVEN}$: two are shown to be irreducible and one to be reducible.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源