论文标题
MANTIS:具有尖峰神经网络的节能自主移动代理
Mantis: Enabling Energy-Efficient Autonomous Mobile Agents with Spiking Neural Networks
论文作者
论文摘要
无人驾驶汽车(UAV)和移动机器人等自主移动试剂表现出巨大的潜力,可以提高人类生产力。这些移动代理需要低功耗/能耗才能具有很长的寿命,因为它们通常由电池提供动力。这些代理还需要适应变化/动态的环境,尤其是在部署在远处或危险位置时,因此需要有效的在线学习能力。可以通过使用尖峰神经网络(SNN)来满足这些要求,因为SNN由于稀疏计算和由于生物启发的学习机制而导致的有效的在线学习,因此提供了低功率/能源消耗。但是,仍然需要一种方法来对自动移动代理使用适当的SNN模型。在此方面,我们提出了一种在自动移动代理上系统地采用SNN的螳螂方法,以在动态环境中实现节能处理和适应能力。我们螳螂的关键思想包括优化SNN操作,使用生物成分的在线学习机制以及SNN模型选择。实验结果表明,与具有32位权重的基线网络相比,我们的方法具有高度准确性(即,具有8位权重的SNN模型的3.32倍记忆减少和2.9倍的能源节省)保持高精度。通过这种方式,我们的螳螂可以使用SNN来用于资源和能源受限的移动代理。
Autonomous mobile agents such as unmanned aerial vehicles (UAVs) and mobile robots have shown huge potential for improving human productivity. These mobile agents require low power/energy consumption to have a long lifespan since they are usually powered by batteries. These agents also need to adapt to changing/dynamic environments, especially when deployed in far or dangerous locations, thus requiring efficient online learning capabilities. These requirements can be fulfilled by employing Spiking Neural Networks (SNNs) since SNNs offer low power/energy consumption due to sparse computations and efficient online learning due to bio-inspired learning mechanisms. However, a methodology is still required to employ appropriate SNN models on autonomous mobile agents. Towards this, we propose a Mantis methodology to systematically employ SNNs on autonomous mobile agents to enable energy-efficient processing and adaptive capabilities in dynamic environments. The key ideas of our Mantis include the optimization of SNN operations, the employment of a bio-plausible online learning mechanism, and the SNN model selection. The experimental results demonstrate that our methodology maintains high accuracy with a significantly smaller memory footprint and energy consumption (i.e., 3.32x memory reduction and 2.9x energy saving for an SNN model with 8-bit weights) compared to the baseline network with 32-bit weights. In this manner, our Mantis enables the employment of SNNs for resource- and energy-constrained mobile agents.