论文标题
通过$接口工程操纵分层磁性拓扑绝缘器异质结构中的自旋晶格耦合$
Manipulating Spin-Lattice Coupling in Layered Magnetic Topological Insulator Heterostructure $via$ Interface Engineering
论文作者
论文摘要
拓扑绝缘子(TI)中的诱导磁序可以通过将磁性变量沉积在Ti表面上,或用外部延长薄膜或二维(2D)Van der Waals(VDW)材料的堆叠组装来实现。在此,我们报告了在其他非磁性ti bi $ _ \ mathrm {2} $ te $ _ \ mathrm {3} $中的观察,这是由于FEPS $ _ \ MATHRM {3} $(Antififermagnet $ sim $ _ Mathrmagnet $ sim) 120 K),在VDW异质结构框架中。依赖温度的拉曼光谱研究揭示了与通常的声子非谐调性偏离,源于bi $ _ {2} $ _ {2} $ _ {2} $ te $ _ {3} $/feps $ _ {3} $ _ {3} $界面的峰Bi $ _ {2} $ TE $ _ {3} $(106 cm $^{ - 1} $和138 cm $^{ - 1} $在堆叠的异质结构中。 Ginzburg-landau(GL)形式主义,那里的各个声子频率在AFM阶段被采用以理解Hybrid Magneto-Magneto-earlastic模式的起源。同时,将feps $ _3 $的特征性$ t_ \ mathrm {n} $从隔离的片段中的120 K $ _3 $减少到异质结构中的65 k,这可能是由于界面菌株所致,这可能是由于使用密度函数理论(dft ftf ftf的计算研究)导致较小的fe-s-fe键角,从而导致较小的fe-s-fe键角。此外,在Bi $ _ {2} $ te $ _ {3} $/feps $ _ {3} $堆栈中插入Bi $ _ {2} $ te $ _ {2} $ te $ _ {2} $ _ {2} $ te $ _ {3} $中的Anharmonicity。在堆叠的异质结构中控制界面自旋 - 偶联可以在表面代码自旋逻辑设备中具有潜在的应用。
Induced magnetic order in a topological insulator (TI) can be realized either by depositing magnetic adatoms on the surface of a TI or engineering the interface with epitaxial thin film or stacked assembly of two-dimensional (2D) van der Waals (vdW) materials. Herein, we report the observation of spin-phonon coupling in the otherwise non-magnetic TI Bi$_\mathrm{2}$Te$_\mathrm{3}$, due to the proximity of FePS$_\mathrm{3}$ (an antiferromagnet (AFM), $T_\mathrm{N}$ $\sim$ 120 K), in a vdW heterostructure framework. Temperature-dependent Raman spectroscopic studies reveal deviation from the usual phonon anharmonicity originated from spin-lattice coupling at the Bi$_{2}$Te$_{3}$/FePS$_{3}$ interface at/below 60 K in the peak position (self-energy) and linewidth (lifetime) of the characteristic phonon modes of Bi$_{2}$Te$_{3}$ (106 cm$^{-1}$ and 138 cm$^{-1}$) in the stacked heterostructure. The Ginzburg-Landau (GL) formalism, where the respective phonon frequencies of Bi$_{2}$Te$_{3}$ couple to phonons of similar frequencies of FePS$_{3}$ in the AFM phase, has been adopted to understand the origin of the hybrid magneto-elastic modes. At the same time, the reduction of characteristic $T_\mathrm{N}$ of FePS$_3$ from 120 K in isolated flakes to 65 K in the heterostructure, possibly due to the interfacial strain, which leads to smaller Fe-S-Fe bond angles as corroborated by computational studies using density functional theory (DFT). Besides, inserting hexagonal boron nitride within Bi$_{2}$Te$_{3}$/FePS$_{3}$ stacking regains the anharmonicity in Bi$_{2}$Te$_{3}$. Controlling interfacial spin-phonon coupling in stacked heterostructure can have potential application in surface code spin logic devices.