论文标题
f = 1个自旋轨道耦合的玻璃纤维凝结物中的固定孤子冷凝水
Stationary solitons in F=1 spin-orbit coupled Bose-Einstein condensates
论文作者
论文摘要
我们认为单型波激发$ f = 1 $旋转轨道耦合的玻色 - 因斯坦冷凝物(SOBEC)。单个粒子分散关系的三个分支中的任何一个中,SOBEC的低能特性都可以通过合适的标量非线性Schrödinger(NLS)方程来描述,我们使用多个规模的扩展获得。这使我们能够检查各种不同的配置,例如与高能量分支相关的深色孤立波,以及最低分支中的深色和明亮的结构。最低的分支还可以表现出一个``超条件''相位支持孤立波的阶段。在所有情况下,我们都为NLS系数提供明确的表达式,并通过对SOBEC系统的完整数值模拟确认其有效性,包括谐波限制电位。
We consider solitary wave excitations above the ground state of $F=1$ spin-orbit coupled Bose-Einstein condensates (SOBECs). The low energy properties of SOBECs in any of the three branches of the single particle dispersion relation can be described by suitable scalar nonlinear Schrödinger (NLS) equations which we obtain using multiple-scale expansions. This enables us to examine a variety of different configurations, such as dark solitary waves associated with higher energy branches, as well as dark and bright structures in the lowest branch. The lowest branch can also exhibit a ``superstripe'' phase that supports solitary waves. In all cases, we provide explicit expressions for the NLS coefficients, and confirm their validity with full numerical simulations of the SOBEC system including a harmonic confining potential.