论文标题

schrödinger方程的推导

Derivation of the Schrödinger equation from QED

论文作者

Efthimiades, Spyros

论文摘要

Schrödinger方程将电子波函数和电势相关联,这些电势是出现的物理量。在这种紧急级别上,Schrödinger方程是作为量子物理学原理假定的,或者是通过启发性获得的。但是,Schrödinger方程是我们可以从QED基础中得出的低能条件。由于电磁耦合常数的较小值,我们表明,在低能相互作用中,电势准确地表示中间光子交换的贡献。然后,我们看到电子波函数的主要项是平面(但不是自由)波的叠加,通过实现总能量关系,可以满足Schrödinger,Pauli和Dirac方程。此外,我们表明,被认为是Schrödinger方程的动能项并不代表相互作用电子的动能。我们分析和阐明Schrödinger方程的动力学。

The Schrödinger equation relates the electron wavefunction and the electric potential, which are emergent physical quantities. At that emergent level, the Schrödinger equation is either postulated as a principle of quantum physics or obtained heuristically. However, the Schrödinger equation is a low energy condition we can derive from the foundations of QED. Due to the small value of the electromagnetic coupling constant, we show that, in low energy interactions, the electric potential accurately represents the contributions of the intermediate photon exchanges. Then, we see that the dominant term of the electron wavefunction is a superposition of plane (but not free) waves which, by fulfilling the total energy relations, satisfies the Schrödinger, Pauli, and Dirac equations. Furthermore, we show that what is considered the kinetic energy term of the Schrödinger equation does not represent the kinetic energy of the interacting electron. We analyze and clarify the dynamics of the Schrödinger equation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源