论文标题

具有应用于晶体结构自动编码器的神经结构场

Neural Structure Fields with Application to Crystal Structure Autoencoders

论文作者

Chiba, Naoya, Suzuki, Yuta, Taniai, Tatsunori, Igarashi, Ryo, Ushiku, Yoshitaka, Saito, Kotaro, Ono, Kanta

论文摘要

代表材料的晶体结构以促进通过神经网络确定它们,对于启用涉及晶体结构估计的机器学习应用至关重要。在这些应用中,材料的反设计可能有助于探索具有所需特性的材料而不依赖运气或偶然性。我们建议神经结构场(NESF)作为使用神经网络代表晶体结构的准确和实用方法。拟议的NESF受到物理学和计算机视觉中隐式神经表示的概念的启发,将晶体结构视为连续场,而不是离散的原子集。与现有的基于网格的离散空间表示不同,NESF克服了空间分辨率和计算复杂性之间的权衡,可以代表任何晶体结构。我们提出了一个可以恢复各种晶体结构的晶体结构的自动编码器,例如钙钛矿结构材料和铜矿超导体的晶体结构。广泛的定量结果表明,与现有的基于网格的方法相比,NESF的表现出色。

Representing crystal structures of materials to facilitate determining them via neural networks is crucial for enabling machine-learning applications involving crystal structure estimation. Among these applications, the inverse design of materials can contribute to explore materials with desired properties without relying on luck or serendipity. We propose neural structure fields (NeSF) as an accurate and practical approach for representing crystal structures using neural networks. Inspired by the concepts of vector fields in physics and implicit neural representations in computer vision, the proposed NeSF considers a crystal structure as a continuous field rather than as a discrete set of atoms. Unlike existing grid-based discretized spatial representations, the NeSF overcomes the tradeoff between spatial resolution and computational complexity and can represent any crystal structure. We propose an autoencoder of crystal structures that can recover various crystal structures, such as those of perovskite structure materials and cuprate superconductors. Extensive quantitative results demonstrate the superior performance of the NeSF compared with the existing grid-based approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源