论文标题

美国梦的命运:第一次通过重置收入动态的方法

The fate of the American dream: A first passage under resetting approach to income dynamics

论文作者

Jolakoski, Petar, Pal, Arnab, Sandev, Trifce, Kocarev, Ljupco, Metzler, Ralf, Stojkoski, Viktor

论文摘要

对个人收入动态的详细知识对于研究美国梦的存在至关重要:我们能够在工作生活中提高收入状况吗?这个关键问题仅归结为观察个人身份以及它如何在两个阈值之间移动:当前收入和所需收入。然而,我们对收入的这些时间特性的了解仍然有限,因为我们依靠过渡矩阵的估计来通过将单个变化汇总为分位数来简化收入动态,从而忽略了显着的显微镜变化。在这里,我们通过在基线随机过程中采用第一个通行时间概念来弥合这一差距,并重置用于建模收入动态并开发一个能够将收入的时间特性划分为单个工人水平的框架。我们通过分析发现,并以数字说明我们的框架与过渡矩阵方法正交,并导致改进和更颗粒状的估计值。此外,为了促进该框架的经验应用,我们引入了公开可用的统计方法,并使用美国收入动态数据展示了该应用程序。这些结果有助于提高我们对实际经济中收入的时间特性的理解,并提供一组设计政策干预措施的工具。

Detailed knowledge of individual income dynamics is crucial for investigating the existence of the American dream: Are we able to improve our income status during our working life? This key question simply boils down to observing individual status and how it moves between two thresholds: the current income and the desired income. Yet, our knowledge of these temporal properties of income remains limited since we rely on estimates coming from transition matrices which simplify income dynamics by aggregating the individual changes into quantiles and thus overlooking significant microscopic variations. Here, we bridge this gap by employing First Passage Time concepts in a baseline stochastic process with resetting used for modeling income dynamics and developing a framework that is able to crucially disaggregate the temporal properties of income to the level of an individual worker. We find analytically and illustrate numerically that our framework is orthogonal to the transition matrix approach and leads to improved and more granular estimates. Moreover, to facilitate empirical applications of the framework, we introduce a publicly available statistical methodology, and showcase the application using the USA income dynamics data. These results help to improve our understanding on the temporal properties of income in real economies and provide a set of tools for designing policy interventions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源