论文标题
人物:多人图形神经网络
PersonaSAGE: A Multi-Persona Graph Neural Network
论文作者
论文摘要
由于它们在许多重要的下游应用程序上的最新性能,因此近年来,图形神经网络(GNN)变得越来越重要。现有的GNN主要集中于学习单个节点表示,尽管一个节点通常在不同的情况下表现出多义行为。在这项工作中,我们开发了一个基于角色的图形神经网络框架,称为thermasage,该框架学习图中每个节点的多个基于角色的嵌入。与单个嵌入相比,这种分离的表示更容易解释和有用。此外,角色还可以学习图中每个节点的适当角色嵌入,并且每个节点都可以具有不同数量的分配角色嵌入。该框架足够灵活,一般设计有助于学习嵌入的广泛适用性以适合该域。我们利用公开可用的基准数据集来评估我们的方法并针对各种基准。该实验证明了人格对各种重要任务的有效性,包括链接预测,我们的平均增益为15%,同时保持节点分类的竞争力。最后,我们还通过一个案例研究证明了角色的实用性,以在数据管理平台中对不同实体类型的个性化建议。
Graph Neural Networks (GNNs) have become increasingly important in recent years due to their state-of-the-art performance on many important downstream applications. Existing GNNs have mostly focused on learning a single node representation, despite that a node often exhibits polysemous behavior in different contexts. In this work, we develop a persona-based graph neural network framework called PersonaSAGE that learns multiple persona-based embeddings for each node in the graph. Such disentangled representations are more interpretable and useful than a single embedding. Furthermore, PersonaSAGE learns the appropriate set of persona embeddings for each node in the graph, and every node can have a different number of assigned persona embeddings. The framework is flexible enough and the general design helps in the wide applicability of the learned embeddings to suit the domain. We utilize publicly available benchmark datasets to evaluate our approach and against a variety of baselines. The experiments demonstrate the effectiveness of PersonaSAGE for a variety of important tasks including link prediction where we achieve an average gain of 15% while remaining competitive for node classification. Finally, we also demonstrate the utility of PersonaSAGE with a case study for personalized recommendation of different entity types in a data management platform.