论文标题

按时间域统计表征和神经网络处理对信号的频谱分析:应用于校正脉冲样波形中光谱振幅改变的应用

Spectral analysis of signals by time-domain statistical characterization and neural network processing: Application to correction of spectral amplitude alterations in pulse-like waveforms

论文作者

Bustos, Guillermo H., Segnorile, Héctor H.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We present a time-domain method to detect and correct spectral alterations of signals by employing statistical characterization of waveforms and a pattern-recognition procedure using simple Artificial Neural Networks. The proposed strategy implements very-fast routines with a computational cost proportional to the number of signal samples, being convenient for applications in embedded environments with limited computational capabilities or fast real-time control tasks. We use the proposed algorithms to correct spectral amplitude attenuations in a pulse-like waveform with a sinc profile as an application example.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源