论文标题
费米 - 哈伯模拟器中的挫败感和掺杂引起的磁性
Frustration- and doping-induced magnetism in a Fermi-Hubbard simulator
论文作者
论文摘要
强相关系统中的几何挫败感会导致许多新颖的有序状态和有趣的磁相,例如量子自旋液体。在各向异性三角形晶格上,哈伯德模型可以描述有前途的候选材料,这是一种范式模型,捕获了强相关和磁性挫败感之间的相互作用。然而,在巡回掺杂剂存在下,沮丧的磁性的命运尚不清楚,及其与方形哈伯德模型的掺杂阶段的联系。在这里,我们利用各向异性光学晶格中的超低费物连续地调整了从正方形到三角形几何形状的各向异性光学晶格中的超低费米,研究了具有可控的挫败感和掺杂的哈伯德模型的局部自旋顺序。在半填充和强烈的相互作用$ u/t \ sim 9 $时,我们在单点级别上观察到挫败感如何减少磁相关的范围,并驱动从共线NéelAntiferRomagnet过渡到短距离相关的120 $^{\ CICK} $螺旋相。远离半填充,三角极限显示出增强的抗铁磁相关性,在孔掺杂的一侧,在20%以上的粒子掺杂物上逆转到铁磁相关性,暗示了动力学在挫败系统中的作用。这项工作为探索三角形晶格中可能的手性有序或超导阶段的方式铺平了道路,并实现了T-T'方形晶格哈伯德模型,这对于描述丘比特材料中的超导性至关重要。
Geometrical frustration in strongly correlated systems can give rise to a plethora of novel ordered states and intriguing magnetic phases, such as quantum spin liquids. Promising candidate materials for such phases can be described by the Hubbard model on an anisotropic triangular lattice, a paradigmatic model capturing the interplay between strong correlations and magnetic frustration. However, the fate of frustrated magnetism in the presence of itinerant dopants remains unclear, as well as its connection to the doped phases of the square Hubbard model. Here we investigate the local spin order of a Hubbard model with controllable frustration and doping, using ultracold fermions in anisotropic optical lattices continuously tunable from a square to a triangular geometry. At half-filling and strong interactions $U/t \sim 9$, we observe at the single-site level how frustration reduces the range of magnetic correlations and drives a transition from a collinear Néel antiferromagnet to a short-range correlated 120$^{\circ}$ spiral phase. Away from half-filling, the triangular limit shows enhanced antiferromagnetic correlations on the hole-doped side and a reversal to ferromagnetic correlations at particle dopings above 20%, hinting at the role of kinetic magnetism in frustrated systems. This work paves the way towards exploring possible chiral ordered or superconducting phases in triangular lattices and realizing t-t' square lattice Hubbard models that may be essential to describe superconductivity in cuprate materials.