论文标题

$ 1/φ$与Bak-Tang-Wiesenfeld Sandpile的应力动态频谱

$1/φ$ Spectrum of the Stress Dynamics with the Bak-Tang-Wiesenfeld Sandpile

论文作者

Shapoval, Alexander, Shnirman, Mikhail

论文摘要

借助原始的Bak-Tang-Wisenefeld(BTW)沙板,我们发现了维持自组织关键性(SOC)机制中的$ 1/φ$噪声 - 与SOC的概念一起提出的问题。我们认为,BTW沙珀的压力动力学遵循研究生应力积累的准周期,最终导致压力释放和系统降至亚临界状态。在热力学极限中,周期内动力学表现出$ 1/φ$频谱,该频谱无限地延伸,与临界状态内的应力释放相对应。

With the original Bak-Tang-Wisenefeld (BTW) sandpile we uncover the $1/φ$ noise in the mechanism maintaining self-organized criticality (SOC) - the question raised together with the concept of SOC. We posit that the dynamics of stress in the BTW sandpile follows quasi-cycles of graduate stress accumulation that end up with an abrupt stress-release and the drop of the system to subcritical state. In thermodynamic limit, the intra-cycle dynamics exhibits the $1/φ$ spectrum that extends infinitely and corresponds to the stress-release within the critical state.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源